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We present the design and operation of a flow apparatus for investigations of mixing 
in time-periodic and spatially periodic chaotic flows. Uses are illustrated in terms of 
two devices operating in the Stokes regime : the partitioned-pipe mixer, a spatially 
periodic system consisting of sequences of flows in semicircular ducts, and the 
eccentric helical annular mixer, a time-periodic velocity field between eccentric 
cylinders with a superposed Poiseuille flow ; other mixing flows can be implemented 
with relative ease. Fundamental differences between spatially periodic and time- 
periodic duct flows are readily apparent. Steady spatially periodic systems show 
segregated KAM-tubes coexisting with chaotic advection ; such tubes are remarkably 
stable under a variety of experimental conditions. Time-periodic duct flows lead to 
complex streakline structures ; since regular regions in the cross-sectional flow move 
through space, a streakline can find itself injected in a regular domain for some time 
then be trapped in a chaotic region, and so on, leading to ' intermittent ' behaviour. 

1. Introduction 
Mixing of viscous fluids plays an important role in many industrial processes; 

examples include polymer processing, various types of biochemical and biomedical 
processes, food engineering, and materials processing. In  the context of polymers the 
most obvious examples include blending of molten polymers to  produce blends of 
unique properties and reactive mixing in various types of extruders utilized as 
continuous reactors. It is apparent that  new technological developments will 
necessitate a deeper understanding of fluid mixing; for example new polymer 
applications are increasingly integrating mixing, reaction, and devolatilization into 
one continuous process. However, designing polymer mixing operations from first 
principles is still not feasible and i t  is therefore not surprising that current designs are 
based on trial and error and closely guarded empiricisms. Similar comments apply to 
other areas as well. The need for basic understanding of mixing was forcefully 
articulated by J. R. A. Pearson in the 25th anniversary issue of this journal (Pearson 
1981) : 

I have come across relatively few practising chemical engineers who make creative use of 
fluid mechanics.. . Mixing in liquids - blending, agitation, dissolution, emulsification, or 
just plain stirring - is a typical issue. The process is inseparable from the mechanics of the 
flow employed ; in many cases, the rheological properties of the fluid.. . are dependent on the 
local proportions and state of the various constituents of the mixture, i.e. on the degree and 
uniformity of the mixing. So there can be strong coupling between the mixing flow and the 
material being mixed. This is well known in a general sense to engineers, but there is little 
formal theory for them to refer to ... Seldom is a student presented with much overall 
insight into the differing contributions made by different flow fields.. . or into the objectives 
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of mixing processes, which may include heat transfer and aggregation or disaggregation of 
a dispersed phase. 

Even though we are still some way off from addressing all the points raised by these 
comments it is apparent, however, that the picture has improved somewhat since 
Pearson’s dictum in 1981. New concepts based on dynamical systems and chaos (Aref 
1984) have revived interest in mixing and a few aspects of thc problem, especially 
mixing in slow flows, are beginning to be undcrstood (for a general review see Ottino 
1989; a useful collection of references is given in Aref 1991). In particular, 
experiments have demonstratcd the applicability of these ideas and a few two- 
dimensional velocity fields have been studied in some detail (e.g. Chaikcn et al. 1986; 
Chien, Rising & Ottino 1986; Leong & Ottino 1989; Swanson & Ottino 1990; 
Solomon & Gollub 1988). There is, however, a need to extend the results to more 
complex systems such as three-dimensional configurations, blending processes 
involving immiscible liquids. and systems with complex rheology . Here we consider 
the first of these three possibilities. 

It has been known for over two decades that chaos is possiblc in steady thrce- 
dimcnsional velocity ficlds. This finding goes back to Hgnon (1966) who showed 
numerical evidence of chaos in a Beltrami flow - a steady, spatially periodic solution 
to Euler’s equation -known today as the ABC flow (Dombre et ul. 1986). At the 
other end of the spectrum are the recent examples of Bajer & Moffatt (1990) and 
Stone, Nadim & Strogatz (1991) of chaotic Stokes flows within a spherical droplet. 
However, the possibility of realizing these systems in the laboratory seems remote. 
This leaves a few choices amenable to both experimentation and computation. Here 
we focus on the possibility of generating chaos in time-periodic and spatially periodic 
duct flows. Examples of such flows are the partitioned pipa mixer modcl (PPM) 
developed by Khakhar, Pranjione & Ottino (198i), the twisted pipe model (TP) of 
Jones, Thomas & Aref (1989), and the accentrir helicul annular mixer (EHAM, Ottino 
1989). The PPM is a sequence of rectangular plates held stationary inside a rotating 
tube, whereas the T P  is a sequence of half-tori each rotated by a ‘pitch angle’ with 
respect to its neighbours ; both of these systems are spatially periodic. The EHAM 
consists of an axial Poiseuille flow between eccentric cylinders whose rotation rates 
are modulated periodically in time. Previous studies have addressed the behaviour 
of the PPM and TP flows (Khakhar et al. 1987; Jones at al. 1989); however, these 
models involve approximations, e.g. neglecting entrance flows, and it is important to  
check if experiments substantiate the computational predictions. The model for the 
EHAM, on the other hand is ‘exact’ in the sense that it does not involve any 
approximations beyond that of Stokes flow. 

In this work we present experimental results obtained from a new apparatus 
capable of generating both time-periodic and spatially periodic duct flows. The case 
of spatially periodic flows is illustrated with the P P M  whereas the case of time- 
periodic duct flows is illustrated with the EHAM ; none of thcse flows appears to have 
been studied before. Both systems are operated under the Stokes flow regime. There 
is an important advantage to this mode of operation with Newtonian fluids; the axial 
and cross-sectional velocity fields are independent and this allows for considerable 
control of the mixing before the material exits the system. 

The results presented are primarily experimental but supporting computations are 
provided as well. However, as opposed to previous studies involving two-dimensional 
velocity fields, the experimental assessment of chaos is mostly qualitative, that is, we 
do not identify horseshoe maps as done previously by Chien et al. (1986). This, 
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FIGURE 1 .  Conceptual sketch of a duct flow. 

however, should pose no serious difficulties as the demarcation between regular and 
chaotic behaviour will be rcadily apparent. The organization of the paper is as 
follows: $2 gives some foundation regarding regular duct flows as well as a brief 
introduction to both the PPM and EHAM. Section 3 describes the experimental 
apparatus, computer control, and flow visualization conditions. Section 4 is divided 
into two parts and is devoted to the presentation and interpretation of key 
experimental results. Finally, $5  is devoted to possible extensions of the experimental 
results. 

2. Mixing in continuous flows 
2.1. Regular duct flows 

Regular duct flows are composed of a bounded two-dimensional cross-sectional 
velocity field with stream function 9(x,, x,) augmented by a steady unidirectional 
axial fiow 

where 

!% dt = u3 = V(XI, x,), (3) 

(4) 

A typical picture is shown in figure 1 ; the combination of the cross-sectional flow 
with the unidirectional axial flow causcs a particle to follow a helical path. The 
s h t c h i n g  of infinitesimal matcrial vectors in such flows can be calculated as follows 
(Franjione & Ottino 1991). After a given time T, a particle returns to its initial 
position in the cross-sectional projection while at the same time it moves down the 
duct axis. A fluid particle initially located a t  X = ( X l , X , , X 3 )  a t  time t finds itself a t  
( X I ,  X,, X ,  +!(XI, X , ) )  at  time t + T, where f is given by 

f = v (# (X ,  t’)) dt’ 
0 

(5) 

and $(X , t )  is the cross-sectional motion (the period of recirculation T depends on 
which strcam surface the particle is located on). However, a particle which initially 
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is located very near X (i.e. a t  X+dX) does not return to the same position in the 
cross-sectional after a time T .  The vector d X  attached to the particle X evolves as 

where 

M =  

dXnT = ( l - M ) n * d X  

and dxnT is the state of d X  after n periods of length T .  Since M2 is identically zero, 
it can be shown that as long as the elements of M are bounded, the length of dx 
increases as t ,  indicating that mixing is poor. (Note that this result is more general 
than that corresponding to steady curvilinear flows (No11 1962 ; Ottino 1989). M2 is 
identically zero since both v.V,T and v.V,f are zero (V ,  is the gradient with respect 

Regular duct flows can be made chaotic by exploiting analogies with two- 
dimensional flows. The first possibility is to  make the cross-sectional flow time- 
periodic ; the second possibility is to make the cross-sectional flow spatially periodic. 
A necessary, but not sufficient condition, is that the streamline portraits a t  two 
successive times or axial distances show crossing of streamlines. In this case the 
length stretch in chaotic regions is exponential. 

2.2. The PPM flow 

The partitioned pipe mixer (PPM) consists of a pipe of radius R partitioned into a 
sequence of semicircular ducts by rectangular plates of length L placed orthogonally 
to each other ; the system can be regarded as an idealized version of a commercial 
mixer called the Kenics static mixer (Middleman 1977). A sketch of the PPM model 
and the cross-sectional streamlines of the model flow are shown in figure 2(a). The 
axial flow is driven by a pressure gradient. The solution for a semicircular duct of 

to 4,4).) 

radius R is sin [(2k- 1 )  81 
k-1 (2k-1){4-(2k-1)2}’ 

where the average velocity is given by 

The two-dimensional cross-sectional flow satisfies 

with boundary conditions 
V4$ = 0, 

A one-term weighted-residuals solution of (lo), ( 1  1 )  is 
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FIGURK 2. Conceptual sketches of two continuous chaotic mixers and representative 
Cross-sectional streamlines : (a )  PPM : ( 6 )  EHAM. 

with y = (11/3)~--1 (Khakhar 1986). The vclocity field, with the v,-component 
described by a threc-term approximation, is given by 

dr 
w7=-=,4r(1-rY)sin28, dt (13a) 

sin [(2k- 1) 81 3 
V =-= dz 16 c { r 2 k - 1 - r 2 }  

dt ~ ~ - 8 ~ ~ ~  (2k-l){4-(2k-l)'} 

(the velocities are made dimensionless by normalizing axial distances by L,  radial 
dist,ances by R, and time by L/(v , ) ) .  The behaviour of the system is thus described 
by a single parameter, ,8, the mixing strength, defined as 

4 V R  L 
3Y (v,) R 

P =  

(/3 can be considered as the product of the characteristic residence time, L/(v,) ,  and 
the cross-sectional shear rate, t!R/R). The physical picture is as follows: a fluid 
particle travels a helical path in each mixer element ; between elements it jumps from 
stream surface to stream surface and a succession of two elements constitutes a unit 
of the flow. The basic structure of the mixing patterns can be investigated by means 
of Poincare' sections ; they can be generated by recording intersections of selected 
trajectories with the surfaces of sections placed a t  distances 2L apart in a very long 
- ideally, infinitely long - mixcr, and then projecting all the intersections onto a 
plane parallel to the surfaces. Such computations indicate that the details of the axial 
velocity field have a major effcct on the structure of Poinear6 sections, and thus on 
the cross-sectional mixing and dispersion. For example, Poincare' sections corre- 
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sponding to plug axial flow (prfect slip at  thc wall) arc quite different from those 
corresponding to Poiseuillc flow. The most important result. however, is that all 
systems display a similar structure independent of the details of the axial flows: 
regular KAM-tubes prevent effertivr cross-sectional mixing and particlcs inside the 
KAM-tubes cannot mix with the rest of the flow (Ottino 1989). 

It is rather clear that  this model is only an approximation. Sotc  for example that 
the vclocity can be written as 

VPPM = ( l - H ( z - I ) ) v ( 8 ) + H ( z - 1 ) v ( e + ; n ) .  (15) 
where v ( 8 )  = (w,,vH,zi,) (see (13a-c)) is a function of ( r ,  O), and u(O+&n) is the velocity 
field after it has been rotated by 90" ( H ( z -  1 )  is the Hcaviside step function which 
is 0 for z <  1 and 1 for z >  1). The divergcnrc of the PPhl velocity field is therefore 

1 d(rz . , (O))  &,(8) 
V.VPPM = (1-H(2-1)) - ~ 

{ r [  ar +-I} (70 

where S(z- 1)  is the Dirac delta function. which is zero everywherc except at z = 1. 
The first two terms are zero by construction of the cross-sectional flow. The third 
and fourth terms are zero everywhere cxwpt at  z = 1 a t  which point v,(O) = w,(8+$t) 
for the velocity field to be divergence frcc. In  general. however, ~ ~ ( 8 )  =!= v,(O+in), so 
conservation of mass is locally violated by the PPhl model. Similar comments apply 
to the twisted pipe model of Jones et al. (1989). The average of the divergence over 
the cross-section is zero which simply means that the total flow rate is the same 
before and after the junction. The key question, however, is whether or not the 
existence of KAM-tubcs predicted by such models can actually be detected by 
experimental means. This is especially important in thc light of the sensitivity of the 
computational results to the details of the axial velocity field. 

2.3. Thr EHLL41 $ow 
By contrast to the PPM. the EHAM model involves no approximations beyond those 
of Stokes flow. The system corresponds to the flow between eccentric cylinders with 
a superposed pressure-driven Poiscuillr flow. A sketch of the EHAM and cross- 
sectional streamlines for counter-rotating cylinders are shown in figure 2 ( 6 ) .  In this 
case the system is time periodic rather than spatially periodic, there is no 
discontinuous jumping of particles between stream surfaces in space. An exact 
solution for the cross-sectional flow was found by Wannier (1950) ; an extensive 
experimental study of this system under time-periodic operation is reported by 
Swanson & Ottino (1990). The velocity ficld in the EHAM is simply a Poiseuille flow 
between eccentric cylinders and the solution used here is that  of Snyder & Goldstein 
(1965). For simplicity the experiments and computations are restricted to a radius 
ratio (R, /R,)  equal to 1/3, and to an eccentricity E = e/(R,-R,) ,  where e is the 
distancc between centres of the cylinders. equal to 0.3. 

3. Experimental 
3.1. Apparat u s  und design considerations 

Since the primary tool of experimental mixing studies is flow visualization, the 
primary design consideration is that views of the flow field must be free from 
obstruction. Similarities between the flows allows a common frame and outer 
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(Drawing not to scale) 

FIGURE 3 .  Continuous chaotic mixer frame. 

cylinder t,o serve as a basis for both mixers. and inserts are used to switch between 
the EHAM and PPM flows. Front and side sketches of the mixer frame and outer 
cylinder are shown in figure 3. The mixers are supported by a frame made of cast 
aluminium tooling plate. Thc outer cylinder is suspended from the top by the upper 
cylinder support block and stabilized on the bottom by the lower cylinder support 
block. Bronze rings arc pressed into holes cut into the centres of the upper and lower 
cylinder support blocks; a bearing is formed between the bronze and the stainless 
steel tubes a t  the top and bottom of the outer cylinder assembly. The outer cylinder 
assembly consists of an 8.8 cm i.d., 10.1 cm o.d., 106 cm long Plexiglas tube 
separating two short, thick stainless steel tubes. The outer cylinder is rotated by a 
largc gear mounted on the upper stainless steel tube. The open top of the outer 
cylinder allows considerable flexibility for addition of the working fluid and dyes. A 
drive motor for the outer cylinder is mounted on the upper cylinder support block. 
The upper and lowcr cylinder support blocks are held apart by two vertical supports; 
rounded rectangular holes in the sides of the support blocks allow side views of the 
flow field. The vertical supports arc attached to a large aluminium base plate. 
Plexiglas sheets are mounted outside the vertical supports ; the space between the 
outer cylinder and the Plexiglas shects is filled with glycerin to  reduce optical 
distortion from the curvature of the outcr cylinder. 

An aluminium drain ring is bolted to the bottom of thc lowcr cylinder support 
block. Four holes (3/4 in NPT) drilled through the sides of the drain ring allow the 
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FIGURE 4. Mixer inserts. 

working fluid to  exit the bottom of the mixer. The horizontal alignment assembly is 
attached to  the bottom of the drain ring. The horizontal alignment assembly is made 
from a 20 cm square, 1.27 cm thick, Plexiglas plate and four stainless steel machine 
screws. A regular octagon, 11 ern across, cut from the centre of the plate serves as the 
horizontal alignment plate. The horizontal alignment plate is adjusted by stainless 
steel screws threaded through four tapped holes in the sides of the fixed plate. 
Another 20 cm square Plexiglas plate is mounted below the horizontal alignment 
plate. The advantage of this configuration is that it allows an unobstructed view of 
the flow field from below, while a t  the same time stabilizing the mixer insert. 

The only difference between the EHAM and P P M  configurations are the mixer 
inserts. For the EHAM we add an inner cylinder assembly, while for the P P M  we add 
a series of stationary baffles; see figure 4. The EHAM inner cylinder is a 2.93 cm 
diameter stainless steel rod 135 cm long. A 0.64 em diameter stainless steel pin, 8 cm 
long is pressed into a hole 2 cm deep in the bottom of the inner cylinder. The top of 
the inner cylinder, which is only 1.27 ern diameter, passes through one end of a 
cantilevered arm ; inside the cantilevered arm are a pair of bearings which allow the 
inner cylinder to turn freely. At the opposite end of the cantilevered arm is the drive 



Mixing in continuous chaotic flows 327 

Cylinder drive motor controllers 

FIGURE 5. Mixer support equipment. 

motor. A timing belt runs from a gear at the top of the inner cylinder to  the drive 
motor. The inner cylinder assembly is attached to the upper cylinder support block. 
The entire inner cylinder apparatus is adjustable horizontally so that the eccentricity 
may be varied. The pin in the bottom of the inner cylinder enters a hole in the 
horizontal alignment plate. 

One of the assumptions in the PPM model is that the plates of the mixer are 
infinitely thin and that they extend all the way to the cylinder wall. Obviously this 
is impossible to realize experimentally. As a compromise the experimental mixer 
insert is made of thin Pyrex plates (0.32 cm x 5.08 em x 8.26 cm). Thinner plates and 
a smaller gap may be possible with metal plates, however lighting would be difficult 
and views of the flow field would be obstructed. Two 0.6 em diameter glass rods, with 
circular loops on one end, are attached to  the top plate of the PPM insert. The loops 
are used t o  suspend the insert from an aluminium frame attached to the upper 
cylinder support block. At the bottom, the insert rests in a 1.3 em deep channel in a 
2.5 em x 5 em x 20 em Plexiglas block which is in turn attached to  the horizontal 
alignment plate. 

Another issue is developing flows. The model analysis assumes that the velocity 
field in each semicircular duct is fully developed, i.e. vZ(r ,8 )  but not wr(r,O,z).  
Experimentally, the ef7ect of the entrance and exit flows could be minimized by 
making the length of the mixer segments long in comparison to  the cylinder radius. 
Within the constraints of our frame and outer cylinder assembly, and the desire to  
have a reasonable number of mixer segments in the system, the length of the plates 
is chosen to be 5.08 em; this gives nine mixer segments in the apparatus. Since the 
length of the plate is less than the cylinder radius, we expect developing flows to be 
important. 

Peripheral to the mixer are motors, control systems, pumps, pipes and storage 
tanks. The entire experimental set-up is shown schcmatically in figure 5. The 
working fluid is transferred from the 30 gallon reservoir to a 5 gallon head tank by 
a gear pump (ECO G6, driven by a hp 90 V DC motor). The pressure in the head 
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tank, mounted 1 ni abovc the mixer. is kept constant by running thc. feed pump a t  
a flow rate higher than the flow ratr to the niiscr : an overflow line recycles fluid back 
to the reservoir. The flow rate to thc mixer is adjusted by a needle valve on the feed 
line and a strainer breaks up the entering stream. The fluid level in the mixer is kept 
constant by an overflow loop in the miser drain linc. The working fluid can be either 
recycled or discarded. Recycling the fluid is done before an experiment to homogenize 
concentration and thermal gradients betlveen the mixer. head tank and the reservoir. 
Several other valves are used to measurc the f l o ~  ratc. and to fill, drain and clean the 
mixer. 

The dye is fed directly to the miser from elevatrd reservoirs and Q in. Salgene 
polyethylene needle valves regulate the tlyc flo\v rate. The dye is injected through 
20 cm long. 0.32 ern o.d.. 0.16 cm i.d. stainless steel tubes and is fed 80 cm below the 
glycerin feed point in EHAM. or after thc first mixer scypient. which is 30 cm below 
the glycerin feed point. in  the case of the PPRI. 

The drive motors for both cylindcrs are variablc-speed $ h.p. DC motors (Bodine 
NSH-11D5 with 1750: 1 speed reduc+tion). The motors have been modificd with 
2.6 V/l000 r.p.m. tachometers (Hervo-Tek SB-7427A-7) connected directly to the 
armatures of the motors. Thc control systcm. shown in figure 6, monitors the cylinder 
rotation rates and corrects for drift clue to nois>, line voltage in the laboratory. A PC’s 
Limited 286 personal computer and Keithlcy System 570 Data Acquisition 
VC’orkstation are the major hardware coniponcnts of the control system. The 
computer runs Microsoft Quickbasic programs hicah call Keithley Quick500 
subroutincs. The subroutines creatc. load and access tablcs of digital voltages for 
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output to thc motor control boosters or input from the tachometers. The digital 
tables of voltages are sent and received from the 16 bit A/I) and D/A converters in 
the System 570. The angular displacement of the cylinders is calculated by 
numerically integrating the tachometer voltages which are proportional to  the 
cylinder rotation rates. A simple proportional control scheme corrects the output 
voltages. The other components of the control system are the motor control boosters, 
which boost the 0-5 V signals from the computer and send them to the motors, and 
the signal isolation transformcrs (PentaPower KBS1-240D) which protect the 
computer and data acquisition hardware from spurious high-voltage spikes generated 
by the motor control boosters. 

A Sikon FE2 camera and a Xikkor micro f/4.0 105 mm lens are used to expose 100 
and 400 ASA Kodak Ektachrome colour slide film. Yellow and orange filters 
(Quantcnary Y2 and 85A) improve resolution and reduce reflections. The fluorescent 
dyes (rhodamine and fluorescein, Cole Parmer L-00295-15 and L-00295- 17) are 
stimulated by long-wavclength UV light. Two UV lamps (Spectronics XX-40) are 
mounted on the mixer base plate; lighting is perpendicular to the viewing direction. 

3.2. Experimental prowdures 

The working fluid is glycerin (Emery 916 Glycerin 99.7% pure) diluted with water 
(6 g1ycerin:l water) and a small amount of chlorine bleach (1 bleach:900 
glycerin-water) to make the glycerin more transparent. Diluting the glycerin drops 
the viscosity from O( 10 P) to O( 1 P). This has two effects : first the gear pump can run 
longer without overheating; and, second. tiny air bubbles, suspended in the glycerin 
during transfer from the 55 gallon drums to thc fluid reservoir, will float to the 
surface in a reasonable time. 

To prepare for an experiment, glycerin is pumped from 55 gallon drums, diluted, 
mixed and pumped into the reservoir. Air bubbles float to the surface after the fluid 
has sat for one day. The fluorescent dyes are prepared by crushing the dye tablets in 
a mortar and pestal and then mixing the powder into undiluted glycerin. The 
mixture is stirred daily until the glycerin is saturated with dye; this usually takes 
about one wcck. On the day of an experiment the system is run in recycle mode, while 
stirring the glycerin reservoir, for about 2 h ;  this is typically enough time to 
homogenize the glycerin-water mixture in the system. The flow visualization results 
arc extremely sensitive to slight density differences between the dyc and glycerin and 
small density differences, of less than 1 %, cause the dye to rise or sink a t  a noticeable 
rate (O(0.5 cm/min)). As prepared, the fluorescent dyes are denser than the working 
fluid. therefore water is addcd to the dye until the densities are matched. A sample 
of the working fluid is takcn from the flow-rate measuring valve and small samples 
of the diluted dye are injected with disposable pipets into the glycerin-water 
mixture. The densities are considered matched when a 1 cm diameter sphere of dye 
does not movc appreciably in 10 min. 

An experiment is started by setting the axial and cross-sectional velocities, 
allowing the control system to come to steady state, and then starting the dye streak. 
Photographs are taken after the streaklines havc fully developed. In  the PPM this 
occurs when there is no ncw dye interface formcd in the flow. In the EHAM the flow 
i s  ($hanging continuously and the assessment is a bit more problematic ; in this case 
we study the small-scale structures produced at the cxit of the mixer and determine 
when they do not change between periods. In both flows the time to reach steady 
state is determined primarily by the axial flow rate, but a typical time is about 
30min. The dye is turned off' after the pictures have been taken and the dye 
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remaining in the mixer is allowed to drain. When the working fluid in the mixer is 
dye free, the procedure is repeated. A single experimental run takes between 6 and 
10 h and four to six experiments can be performed with the 30 gallons of fluid in the 
glycerin reservoir, Owing to the high cost of glycerin. an exhaustive search of the 
parameter space is rather impractical ; we estimate that the experiments reported 
here consumed 750 gallons of glycerin. 

3.3. Experrimerbtal uncertainties 

Before discussing experimental results a discussion of' experimental uncertainties 
is in order. The largest sources of uncertainty arc thc axial and cross-sectional 
velocities. In the laboratory, the velocities are not measured directly but instead 
they are inferred from other information. The cylinder angular velocities are 
measured by monitoring the output of tachometers attached directly to the 
armatures of the cylinder drive motors. There is a linear relationship between the 
angular velocity of the cylinder and the tachometer voltage. The tachometer voltage 
shows high-frequency noise about the mean voltage and low-frequency drift of the 
mean voltage. The low-frequency drift is corrected by the control system, but the 
random noise, with maximum amplitude of k0.02 V, independent of the mean 
voltage, is uncontrolled ; the measurement uncwtainty is k0.005 V. The axial 
velocity is obtained from the flow rate. which is measured with a 500 ml graduated 
cylinder and a stop watch; the uncertainty in this measurement is f 5  ml/min. 
Although there is no feedback control on the axial velocity, the axial flow rate is 
constant for hours. 

The velocity uncertainties can be quantified in terms of the Reynolds numbers. 
The axial and cross-sectional Reynolds numbers for the EHAM are 

where p is the density, ,u the viscosit,y, R, the out,er cylinder radius, R, the inner 
cylinder radius, (v,) the average axial velocity and V a eharacterist'ic cross-sectional 
velocity, which we take as Ivllmax + Iu21max. The axial and cross-sectional Reynolds 
numbers for the PPM are 

where R is the cylinder radius, and utl the cylinder velocity. For the experiments 
reported here the viscosity, density. inner cylinder radius and outer cylinder radius 
are 1.1 P, 1.2 g/cm3, 1.47 cm and 4.4 em, respectively. The Reynolds numbers, in 
terms of the measured quantities, are 

ReEHAM:axia, = 9.9 x lo-*& min ~ m - ~ + 0 . 0 0 5 ,  

ReEHAM:cs = 0.96El V-'+0.93E2 V'f0 .03 ,  

RePPM:axia, = 1.3 x 1W3& min c.m-'k0.007 

(21) 

(22) 

(23) 

RePPMzcs = 1.M, V-'f0.03. (24) 
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where Q is the axial flow rate, El is the magnitude of the tachometer voltage from 
the inner cylinder and E,  is magnitude of the tachometer voltage from the outer 
cylinder. The ranges of operating conditions are approximately 0 < ElV2 < 6 V ,  
0 < Q < 600 ml/min. This gives Reynolds numbers ranges of 

< ReEHAM:axial < o-6, (25) 

(26) 

< RePPM:axial Oa8, (27) 

(28) 

Since the absolute uncertainties in the cylinder velocities are fixed, the relative 
uncertainties can be minimized by maximizing the voltages and flow rate. Therc arc) 
trade-offs between minimizing the relative errors and satisfying creeping flow 
conditions. To satisfy Stokes flow conditions the voltages and flow rates must be kept 
to a minimum. Another problem is dye buoyancy ; since it is impossible to  match the 
densities exactly, given enough time the dye will move relative to the neighbouring 
fluid (in the experiments this shows up as dye streaks having rough edges). To 
minimize this effect the residence time in the mixer should be relatively short. The 
minimum axial flow rate in practice is about 200 ml/min, which gives a mean 
residence time of about 30 min, and axial Reynolds numbers of about 0.2 for the 
EHAM and 0.3 for the PPM. Diffusion of the dye is relatively unimportant at this 
residence time; the diffusional distance (Dt); is about 0.01 cm for a diffusion 
coefficient D = 0(10-6 cm2/s) and a residence time of 30 min. 

The axial and cross-sectional flow experimental uncertainties in the PPM can also 
be expressed in terms of the mixing strength parameter: 

0 < ReEHAM:cs < 11, 

0 < ReppMzcs < 8. 

p = 1794 cm3 min-' V-' (29) 

For a flow rate of 200ml/min and a tachometer voltage of about 1, the mixing 
strength parameter is 9kO.3, the axial Reynolds number is 0.26 and the cross- 
sectional Reynolds number is about 1.4. At this Reynolds number, there might be 
questions as to  whether or not the mixing is actually independent of the Reynolds 
number (the only way to reduce the Reynolds numbers, given the constraints and 
noise, is to  increase the viscosity, which as discussed above, is impossible with the 
pump and bubbles in the system). The validity of the Stokes flow approximation in 
the PPM is addressed in 54.1.4. 

Let us now consider the effects of time periodicity in the EHAM. If the time of 
diffusion of momentum is much less than the period of the cross-sectional flow 
perturbation (L2/u  < T) then the fluid responds quasi-statically to the motion of the 
boundaries. Equivalently, 

- - L2 - -~ vL = R e S r < l .  
uT v V T  

We define the Strouhal number for the EHAM as 
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If the product of the cross-sectional velocity and the period is small, the Strouhal 
number may be large. On the other hand, if the product is large, the Strouhal number 
will bc small, as desired. The cross-sectional velocity and the period are not 
independent. They arc related because thc angular displacement of the cylinders 
during a period, which determines the structure of the cross-sectional chaos, is the 
integral of the angular velocity over a period. Thrrc is thus a trade-off in choosing 
the period. If the period is long, there will riot be a significant number of periods of 
the cross-sectional flow during the fluids residence time in the mixer (i.e. there will 
be little cross-sectional mixing relative to the axial flow). Alternatively, if the periods 
are short, the Reynolds number of thc c.ross-sectiona1 flow will be large. Typical 
periods of the cross-sectional flow arc bctwccn 20 and 120 s. The Strouhal number, 
in terms of the measured quantities, is 

At the operating conditions chosen, the Strouhal number and its uncertainty are 
small. The uncontrolled high-frequency noise in the tachometer output voltages 
results in angular displacement fluctuations of about 2" per period. Additional 
information about the experimental apparatus and procedures are available in 
Kusch (1991). 

4. Results and interpretation 

4.1. An example of a spatially prriodir systrm : the PPM Jow 
In this section we present a few key results for the PPM flow. This system is an 
example of a steady, spatially periodic chaotic flow : the main parameter governing 
the behaviour of the system is the mixing strcngth p. 

4.1.1. Mixing mechanisms and existence of KAM-tubes 
Let us start by considering the primary mixing mcchanisrns operating in the PPM 

flow; these mechanisms are present in the approximate model as well. Figure 7 ( a )  
(plate 1) shows the evolution of two dye streaks injected into the system operating 
at  p =  10. Immediately after leaving the injection nozzle the green dye streak is 
slightly stretched and then cut by a plate. Subscqurntly, the left side of the cut dye 
streak is slowly stretched in the next three mixer elements and cut again. Similarly 
the right side of the cut dye streak is quickly stretched in the next half-segment and 
is cut by the next plate. The experiment also shows evidence of a secondary flow (not 
accounted for by the model); the left side of the cut green dye streak moves 
backwards as i t  goes over the top edge of the second plate. It is evident that  cutting 
is a contributing mechanism to the mixing; however. it is equally clear that chaos 
can occur without any cutting mechanism (as in the EHAM). In fact. i t  appears that 
the key element for generating chaos in this, as well as other flows, is thc continuous 
shifting or modulation of streamlines. Let us consider now the global dyc structures 
generated in the PPM flow. 

Consider two experiments a t  p = 10; the only difference between the experiments 
is the location of the orange dye streak. Two distinct types of behaviour are readily 
apparent. In  figure 7 ( b )  (plate 1) both dye streaks are well mixed while in figure 7 ( r )  
(plate 1) the orange dye streak travels through the mixer without contacting the 
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yellow dye. After two mixer segments the orange dye streak returns to the same 
cross-sectional position ; this is evidence of a KAM-tube surrounding a period-2 
elliptic point. Moreover the dye streak in the KAM-tube shows very little stretching. 
On the opposite side of the mixer from the KAM-tube with the orange dye streak in 
it is another KAM-tube, identical tjo the one shown in the experiment, except moved 
down one mixer segment ; the tubes spiral around each other as they move down the 
mixer. The spatial extent of the KAM-tubes can be seen as the dye-free oval region 
surrounding the dye streak. The location of the green dye streak in both experiments 
is the same. The flow rate and velocity are nearly identical; however, the resulting 
dye streaks are slightly different. This difference is primarily due to fluctuations in 
the thickness of the green dye streak. The patterns, however, are remarkably similar 
considering that the pictures were taken over two hours apart. This gives an 
indication of the stability and reproducibility of the experiments. 

4.1.2. Mixing behaviour as a function of the mixing strength 
Let us now consider the changes in the mixing behaviour as /3 is increased from 

zero. Figures 8 ( a )  and 8 ( b )  (plate 2) show expcriments for /3 = 0 and 4. For the case 
of /3 = 0 there is no cylinder rotation and the dye streaks travel through the mixer 
nearly undisturbed ; the flow is non-chaotic. The small waviness in the dye stream is 
due to the finite thickness of the plates as well as entrance and exit effects. The case 
corresponding to  p = 4 shows that the addition of a small amount of twist greatly 
enhances the mixing. Computations suggest that  at low values of /? there should be 
large regions of regularity ; however, in several experiments performed on this flow, 
no evidence of KAM-tubes was found. Note, however, that one way KAM-tubes were 
found experimentally, other than by trial and error, was to  visually examine the flow 
near the exit of the mixer for regions the dye did not penetrate. This technique did 
not work at low mixing strengths because the mixing was not intense enough to 
reveal these light spots. With more mixer segments, KAM-tubes could probably be 
found. 

Let us consider the behaviour of the KAM-tubes as p is increased. As discussed 
previously, and as shown in figure 8(c) (plate 2), there are two period-2 KAM-tubes 
at /3 = 10 and as shown in figure 8 ( d - f )  (plates 2 and 3), these tubes are also present 
in flows a t  p = 15, 20, and 25. The cross-sectional area of the KAM-tubes decreases 
and they move towards the centre of the mixer as /3 is increased. We found no 
evidence of additional KAM-tubes; a possible reason is that new periodic elliptic 
points are of high period (4 or higher) and that the cross-section -as suggested by 
computations -is likely to  be small. As the mixing strength increased further to 
/3 = 30, shown in figure 8 ( g )  (plate 3), no dye initial positions can be found that 
are entirely within KAM-tubes. The green dye streak, however, remains partially 
coherent at the mixer exit. Finally, at /3 = 40, there is no evidence of regularity; see 
figure 8 ( h )  (plate 3). At higher values of the mixing strength the dye injection 
apparatus interferes with the resulting dye streak and no reliable experiments are 
possible. 

In spite of simplifications, the PPM model correctly predicts the coexistence of 
chaos and regularity. However, the experiments show that the shape of the KAM- 
tubes arc remarkably independent of the mixing strength whereas computations 
show considerably more variability. Let us consider a few aspects of the model. At 
/3 = 0 the model is accurate in the sense that all points in both the model and 
expcriments return to  the same cross-sectional locations. For /3 > 0 the picture is 
only qualit,atively correct ; for example, figure 9 compares the shape of streaklines 
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(4 
FIGURE 9. Comparison of streaklines inside period-2 KAM-tubes in the PPM experiments and the 
model. Two mixer segments are shown. ( a )  Streakline computed from the model at mixing strength 
/? = 8. ( b )  Streakline from experiment at mixing strength /3 = 10f0.3, He,,, = 0.3, and 
Re,,, cs = 1.8. 

inside the period-2 KAM-tubes for a computation at p = 8 and an experiment at 
/3 = 10. The experiments show two streaklines, each within a KAM-tube. The cross- 
sectional flow of the model is stronger than observed experimentally so the streakline 
deforms more in each mixer element. The experimental streakline is smooth while the 
jumping from one stream surface to another in the model gives rise to non-smooth 
streaklines. Comparison of numerical and experimental streaklines in KAM-tubes a t  
higher values of /3 is simply not possible; computations yield no period-2 elliptic 
points in the Poincar6 section for 10 < p < 40. By p = 10 the model predicts that the 
period-2 KAM-tubes no longer exist ; in fact the period-2 fixed points predicted by 
the model turn out to be hyperbolic,; figure 10 shows P P M  model Poincark sections 
and period 1-3 periodic points for /3 = 8 and 10. In general the PPM model predicts 
many more bifurcations than were observed in the experiments whereas the 
experiments indicate that KAM-tubes are stable for /3 between 10 and 25 (and maybe 
even 30). The model, however, is very useful in screening variations in mixer designs. 
For example, an important aspect that influences the mixing is the sense of rotation 
of adjacent mixer elements; such issues ran be investigated in terms of symmetries 
(Franjione &, Ottino 1992). 
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FIGURE 10. Positions and motions of periodic points in the cross-section of the PPM (a ,  c) and 
corresponding Poincar6 sections ( b ,  d). The crosses represent hyperbolic points and the circles 
elliptic points; the periodic points are for periods 1-3. The mixing strength is (a ,  b )  /3 = 8 ;  and 
(c. d )  /3 = 10. Note the island exchange in the case /3 = 8. 

Chaotic mixing experiments in time-periodic two-dimensional flows quickly reveal 
a large-scale dye-pattern structure that forms a template for subsequent evolution 
of stretching and folding; further action of the flow produces stretched and folded 
striations which are nested within the original template. Moreover, the structure is 
remarkably independent of the initial position of the dye blob, providing that thc 
blob is placed somewhere in the chaotic region. Large-scale structures in two- 
dimensional flow experiments return to their initial positions at the end of each 
period ; a similar mechanism operates in spatially periodic flows. It should be pointed 
out that  there are some difficulties in identifying the asymptotic structure in 
spatially periodic continuous flows ; the main difficulty is that  i t  is rather difficult to 
see the mixed structure internal to thc flow. The most visible structures are the ones 
closest to the outer cylinder and structures internal t o  the flow are therefore 
obstructed. Another problem is that the dye concentration is the lowest where the 
stretching is the most intense and higher where the stretching of the dye is less 
intense. Thercforc wc are less likcly to see the structures most responsible for 
generating the good mixing. 

We identify three structures in the PPM at a mixing strength of p = 10 that 
appear to be periodic ; see figures 7 ( b ) ,  7 ( c )  and 8 ( c ) .  The first is the streaming flow 



336 H .  A .  Kusch and J .  M .  Ottino 

FIGURE 11. Time development of mixed structures in PPM system with no axial flow (/3 = co). The 
angular velocity of the  cylinder is vR = 0.88k0.01 cm/s. ( a )  The initial condition of the dye streak, 
( M )  the dye structure at later times. 

past the plates perpendicular to the paper; the second is the cusps near the outer 
cylinder; and the third is the period-2 KAM-tubes in the flow. As the fluid moves 
down the mixer, structure is added as addit.iona1 Solds and striations in the chaotic 
regions. There are, however, small-scale details that are different from experiment to 
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experiment, and indeed that are not spatially periodic in one experiment. These are 
attributable to differences in the initial conditions and to slight aperiodicities in the 
experimental geometry. 

4.1.3. Mixing with no axial $ow 
The case /3 = 00 corresponds to mixing with no axial flow and serves to  reveal the 

role of backflows. The initial condition is set as follows: we run the mixer a t  p = 0 
(no cross-sectional flow) and produce a single dye streak that travels almost straight 
through the mixer (see figure 8 a ) ;  we then turn off the dye and stop the axial flow. 
The initial condition is shown in figure 11 ( a ) .  When the cross-sectional flow is turned 
on, the dye is deformed as is shown in figure 11 ( b d ) .  In  figure 11 (b)  the dye streak 
has approached the plates perpendicular to  the page and parts have continued past. 
In  figure 11 ( c )  the dye has moved above and below the plates in the plane of the page 
and continued to  the back half of the plate perpendicular to the page. After the flow 
has been run for several minutes the dye has deformed as shown in figure 11 ( d )  (the 
position of the plates is clear in figure l l d ,  although it is slightly different than the 
position in figure 11 a+). Several symmetries are apparent ; the system consists of 
cells spanning two neighbouring half-plates. This is an experimental example of a 
bounded, steady three-dimensional chaotic Stokes flow, I n  this context we cite the 
exact solutions to the Stokes equations that show chaotic streamlines for a steady 
flow inside a sphere found by Bajer & Moffat (1990) and Stone et aE. (1991). 

4.1.4. Effect of Reynolds number 
Implicit in the results presented above is the assumption that the experimental 

system is completely characterized by ,8 and that results are indeed independent of 
the Reynolds number. In  order to test this assumption several sets of experiments 
were run keeping the dye injection constant, but varying the Reynolds numbers. 
Four results are shown in figure 12 corresponding to /3 = 4. Only parts of the mixer 
are shown to highlight small variations. Figures 12(a) and 12(b) show only the fifth 
to seventh mixer segments whereas figures 12 ( c )  and 12 (d )  show the second to fourth 
segments. The streaklines are remarkably similar in spite of significant variation of 
the Reynolds numbers. Differences are primarily due to small fluctuations in the 
thickness of the dye streak at  the injection point. Similar experiments were carried 
out a t  higher values of the mixing strength. It does appear that, within experimental 
error, inertial effects are unimportant a t  the operating conditions used in the ex- 
periments and that the system is completely characterized by the mixing strength /3. 

4.2. An example of a time-periodic system : the EHAM flow 
The eccentric helical annular mixer (EHAM) provides a useful counterpart for 
comparison of the results obtained in the previous Section. The cross-section of this 
system corresponds to  the flow between eccentric cylinders and the axial flow is a 
pressure-driven Poiseuille flow. In this case the system is time-periodic rather than 
spatially periodic and the solution for the velocity field, under Stokes flow, involves 
no additional approximations. Both regular and chaotic regions are advected by the 
flow. 

4.2.1. Steady EHAMJows 
The simplest experiments correspond to steady flows. Two typical cases are 

considered ; companion computations are presented as well. When the cylinders turn 
in the same direction, the cross-sectional streamlines are deformed circles and the 
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FIGIJRE 12. A comparison of mixing in the PPM with constant mixing strength but varying 
Reynolds numbers. The mixing strength parameter p =  4k0.1 (a ,  C )  and 4f0.2 (b ,  d )  and Reynolds 
numbers are: (a )  RePPM:sxia, = 0.6. and RePPM:rs = 1.3: ( b )  RePPM:axia, = 0.4, and RePpM:cs = 0.8; (c) 
ReppMrnxia, = 0.4, and RePPM:cs = 1.0; and ( d )  HeppM:sxilt, = 0.3, and RePPMrcs = 0.7. 

streaklines are skewed helices; see figures 13(a)  and 13(b) .  Whcn the cylinders turn 
in opposite directions there are two critical points in the cross-sectional flow (see 
figure 2 b ) .  A dye streak placed near the elliptic point in the cross-sectional flow does 
not go around the inner cylinder, but stays out in the large-gap region of the flow, 
spiralling around the elliptic point; see figures 13(c)  and 13(d) .  The agreement 
between experiments and computations is excellent. Notice that in both cases the 
dye streaks grow in thickness linearly as they travel down the tube, as predicted in 
82.1. 

4.2.2.  Time-periodic flows 

manner. A possible velocity dependence can be written as 
The EHAM flow can be made chaotic by operating the cylinders a t  a time-periodic 

where vk is the linear velocity of the cylinders, R ,  the cylinder radius, 0, the mean 
angular velocity, 8, the magnitude of the perturbation, Tk the length of the 
perturbation, f, the perturbation function, and the subscript k = 1 ,2  denotes the 
inner and outer cylinders, respectively. Obviously, a wide range of modulations are 
possible. For simplicity we restrict ourselves to modulations with unit perturbation 
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FIGURE 13. Steady experimental (a, c) and numerical (b, d) streaklines in the EHAM. The radius 
ratio and dimensionless eccentricity are 1/3 and 0.3, respectively. The Reynolds numbers and 
cylinder velocities are (a) ReEHAMzaxla, = 0.7, ReEHAMzcs = 6.4, v1 = 1 cm/s and v2 = 1 cm/s; and (c) 
ReEIIAM:ax,a, = 0.7, ReEHAM:Cs = 6.4, v1 = - 1 cm/s, and v 2  = 1 cm/s. The cylinder rotation rates and 
axial velocities of the numerical streaklines (b, d )  are the same as the experimental streaklines. 

0 T 2T 

Time 

FTGIJRE 14. Sample square-wave velocity protocol. When one cylinder is turning the other is not. 
The period of perturbation is defined so that the inner cylinder is turning at  the beginning of the 
period, and YO that the protocol is symmetric with respect to the origin of time ( t  = 0). vlr Inner 
cylinder velocity; v2, outer cylinder velocity ; T, period of perturbation. 

(6, = 1) and square wave velocities, i.e. only one cylinder is turning at  a time (see 
figure 14). Notice that the origin of time, the starting condition for the experiments, 
is chosen as halfway through the motion of one of the cylinders. Swanson & Ottino 
(1990) showed this protocol generates symmetric Poincar6 sections and facilitates the 
investigation of periodic points. 

The starting point for analysis of chaotic motion is provided by Poincar6 sections 
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FIGURE 15. Journal-bearing Poincar6 sections for the 540' and 1080' cases. The eccentricity and 
radius ratio are 0.3 and 1/3, respectively. Square-wave velocity protocols are used. The inner 
cylinder turns (u )  540' and ( b )  1080' per period. The outer cylinder turns half as many degrees per 
period. 

of the two-dimensional flow between eccentric cylinders. Figure 15 shows two typical 
Poincare' sections; the difference between flows is the angular rotation of the 
cylinders per period. I n  figure 15(a) the inner cylinder turns 540" per period, and in 
figure 15 ( b )  the inner cylinder turns 1080" per period ; the outer cylinders turn half 
as many degrees as the inner cylinders (subsequently the flows will be referred to  by 
the number of degrees the inner cylinder turns per period). The primary feature of 
interest is the large period-1 islands (scc Swanson & Ottino 1990). Small dye blobs 
initially placed in the chaotic regions of the two-dimensional flows (identified in the 
Poincard sections as the region where trajectories wander randomly) quickly stretch 
and fold to cover the entire chaotic region while dye blobs placed in islands barely 
stretch or deform at all. What happens in similar experimcnts done in the EHAM 1 
Figures 16(a) and 16(b)  (plate 4) show the results obtained by injecting a dye streak 
into the large regular regions of both flows, and in figure 16(c) and 16(d) (plate 4) a 
second dye streak is added in the chaotic regions. Thcrc is a large difference between 
the results. The results of the 540" case are what we expect by extrapolating from 
two-dimensional chaotic flows results, while the results of the 1080" case are 
somewhat unexpected. Notice the parts of the green dye streak directly beneath the 
injection point ; thosc portions of the dye streak arc behaving similarly to the 540" 
case, while the other portions are being well mixed. The dye streak seems to be 
partially chaotic and partially regular. It is apparent that Poincard sections of the 
two-dimensional cross-sectional flow do not contain all the information necessary to  
predict the gross mixing behaviour of the EHAM flow. 

There are two possible reasons for this behaviour. The first is that, as defined, the 
Poincare' section is independent of the axial flow. At first glance we might try to 
patch up this deficiency by choosing an axial lengthscale so that the surfaces of 
section are equally spaced planes. A Poincark section might then be constructed by 
recording intersections of a few initial conditions with the surfaces of section. This, 
however, does not improve the picturc : the Poincarb scctions so defined are smeared 
and show little structure since particlcs arrivc at  the surfaces a t  different times 
during the period of the cross-sectional flow perturbation. The second reason is the 
manner in which the dye is introduced into the system. Whereas in a two- 
dimensional flow the dye blob is introduced and the mixing experiment is then 
started, in a three-dimensional time-periodic flow, such as the EHAM, the dye 
injection location is fixed and dye is continuously fed throughout the experiment. 
Thus, the dye is convected away from the dye injection location by the flow and 
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FIGURE 17.  Intermediate-time journal-bearing Poincar6 sections. The eccentricity and radius ratio 
are 0.3 and 1/3, respectively. Square wave velocity protocols are used. The inner cylinder turns 
1080° per period and the outer cylinder turns 540' per period. The Poincart! sections are taken at 
(a) the beginning of the period; and ( b )  t ;  (c) 4; ( d )  t ;  ( e )  t ;  (f) t ;  (g) 4; (h) H of the period; and (i) 
at the end of the period. 

thereafter every piece of the streakline acts as a blob in a two-dimensional chaotic 
flow experiment that  also happens to be moving axially. The major difference, 
however, is that the dye is injected into different regions of the cross-section a t  
different parts of the period ; in particular the dye streak might sample both regular 
and chaotic regions of the flow at different times. 'Intermittency' is therefore 
possible ; since the regular regions (islands) move through space, the streakline can 
find itself in a regular domain for some time, then be trapped in a chaotic region, then 
escape and undergo 'relaminarization ', and so on. 

Let us consider the 'intermittency ' issue in more detail. Figure 17 shows Poincar6 
sections for the 1080" case a t  0, i, a, i, g, E, t ,  and of the period. The large dots 
represent the approximate injection location of the green dye streak shown in figure 
16(b) .  In  the 1080" case the island moves all the way around the inner cylinder while 
in similar computations for the 540" case, the island is found t o  be essentially 
stationary. As experimental confirmation, streaklines for the 1080" case are shown in 
figure 18 a t  the same parts of the period as figure 17. At i of the period the poorly 
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(4 0 k) (4 
FIGURE 18. Experimental streaklines in the 1080" flow at intermediate points in the period. The 
radius ratio and dimensionless eccentricity are 1 /3  and 0.3, respectively. The Reynolds numbers, 
and Strouhal number are Re,.,, Bx,s, = 0.2,ReE,,, ps = 4.9, A% = O . O Z ~ 0 . 0 0 0 1 .  The inner cylinder 
turns 1080" and the outer cylinder turns 540" per period. The pictures are taken a t  (a )  the beginning 
of the period; and ( b )  4; ( c )  a;  (d )  g; ( e )  t ;  (f) %; (y) f :  and ( h )  of the period. 
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FIQURE 19. Axial flow effect on chaotic EHAM experiments. The radius ratio and dimensionless 
eccentricity are 1/3 and 0.3, respectively. The inner cylinder turns 1080" and the outer cylinder 
turns 540" per period. The period of perturbation is 90 s .  The Reynolds numbers, Strouhal number 
and time the inner cylinder turns each period are (a) ReEHAM:axlal = 0.2, ReEHAMzcs = 4.9, 
Sr = 0.02+0.0001, Tnner = 45 s ;  ( b )  ReEHAM:ax,al = 0.3, ReEHAMzos = 4.9, Sr = 0.02+_0.0001, q:,,,, = 
45 s;  (c) ReEHAM:ax,al = 0.3, ReEHAMzcs = 5.2, Sr = 0.02+0.0001, T",,,, = 30 s. 

mixed dye, or the island, is just, moving behind the inner cylinder ; at $ of the period 
the island is in the small-gap region, opposite its initial position ; a t  5 of the period 
the island has just passed in front of the inner cylinder; and at p of the period the 
island has almost returned to its initial position. Islands, or KAM-surfaces, in the 
two-dimensional chaotic flows give rise to  KAM-tubes that move about the cross- 
section in time when an axial flow is superimposed. It is thus apparent that 
information from Poincare sections needs to be supplemented with the dynamics of 
the motion of KAM-tubes during the period of the perturbation. 

4.2.3. Mixing dependence on the axial $?ow 
The axial flow does have an impact on the mixed structures created in the EHAM. 

Such effects are highlighted by the three experiments shown in figure 19. In every 
case the inner cylinder turns 1080" and the outer cylinder 540" per period. The 
differences are (i) in figures 19(a) and 19(b) the inner and outer cylinders each turn 
for 45 s while in figure 19 (c )  the inner cylinder turns for 30 s and the outer cylinder 
for 60 s;  and (ii) in figure 19(a) the average axial velocity is about 0.05 cm/s, while 
in figures 19(b) and 19(c) it  is about 0.1 cm/s. The Poincare' sections for these three 
conditions (shown in figure 15b) are identical (Swanson & Ottino 1990 showed that 



344 H .  A .  Kusch and J .  M .  Ottino 

. . . . . . . . 

..__ .._ .._ 

. .  . 
_..... 

.A ' 
..... 

. _  . .. 
. _. . _ .  .. 

. .  

. .  . .  . .  
r; 

- 
(4 

FIGURE 20. Comparison of numerical (u, 6) and experimental (c)  streaklines in a chaotic EHAM 
flow. The radius ratio and dimensionless ercentririty are 1/3 and 0.3. respectively. The inner 
cylinder turns 1080' and the outer cylinder 540' per period. The flow is from top to bottom. The 
initial positions of the streaklines are in the period- 1 island. The numerical streaklines are for 4 
periods. The number of points injected is ( 0 )  constant per period and (6) increasing with each 
period. The Reynolds numbers and Strouhal number for the experimental streakline ( c )  are 
Re,,,, axial = 0.2. ReEHAMzes = 4.9. and Sr  = 0.02f0.0001. 

the important parameter in the Poincard sections is the total distance the cylinders 
turn, not the actual velocity protocols. provided that the flow is in the Stokes regime 
and that one and only one cylinder is turning at a time). The other similarity in the 
experimental conditions is that the dye injection location is the same for the three 
experiments. The dye injection location is chosen so that dye is injected into the 
KAM-tube for part of the period and into the chaotic region for part of the period. 

We start by comparing figures 19 (u )  and 19 (b). The mixed structures created in the 
two flows are nearly identical, the primary difference being that figure 19(b) has a 
higher axial flow rate and therefore it moves the mixed dye streak further down the 
tube. Note, however, that similar parts of the dye streaks have stretched more in the 
axial direction in the higher flow-rate case. This is probably due to axial dispersion. 
Figures 19 (b) and 19 (c) illustrate a different point : in this case the time each cylinder 
turns during the period is different. although the sum of the times is the same; the 
axial flow rates of the two flows are nearly the same. The mixed structures are again 
very similar; however, there are differences in the shape and relative axial positions 
of the dye streak. This is due to different c.ylindcr angular velocities ; KAM-tubes and 
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pcriodic points movc a t  different speeds and thereforc cxplore regions of different 
axial velocities resulting in different dye structures. 

4.2.4. Numerical streaklines 

Most of the results of the previous sections can be verified numerically. 
Experiments, however, provide resolution far beyond what is possible compu- 
tationally. Consider for example the simulation of streaklines. Since the flow is 
time-periodic, the streakline is changing through the period. The streaklines 
discussed bclow are all 'snapshots' of the 1080" case taken a t  the beginning of a 
period. The dye injection location is in the KAM-tube. The numerical streaklines are 
represented by a collection of points. If a constant number of points (300) is injected 
a t  cqually spaced times through the period, after four periods the streakline has been 
stretched and deformed, as shown in figure 20(a) .  Parts of the streakline have 
degenerated into a cloud of points ~ a manifestation of sensitivity to initial 
conditions - while the points comprising the part of the streakline in the KAM-tube 
have barely separated a t  all. Also, the points in the KAM-tube have movcd farther 
axially than the points in the chaotic region. To fully resolve the streakline, many 
morc points have to be added in the chaotic region. This is where computational 
limits arise : since points separate exponentially fast in the chaotic region, the 
number of points required to represent a chaotic streakline grows exponentially in 
time, leading to  the data storage and computational time problems discussed by 
Pranjione & Ottino (1987). The streakline with extra points added, figure 20 ( b )  can 
be compared to the streakline without extra points in figure 20(a) .  Both streaklines 
are for four periods. This is a reasonable limit for a SUN 4 because this particular 
streakline required approximately 100 hours of CPU time. An experimental result 
with an  initial position similar to those of the numerical streaklines is also presented 
in figure 20(c)  (the experiment is not restricted to four periods). In theory the 
experimental results could be mimicked numerically by injecting several 'point ' 
streaklines very close to one another. This is impractical, however, and an 
interpretation based a combination of results such as those in figures 20 (a,  b )  should 
be adequate for most practical applications. 

5. Conclusions 
We have presented the design and operation of a device suited for studies of 

chaotic mixing in continuous-throughput flows. Two kinds of systems can be readily 
implemented : steady spatially periodic flows and time-periodic systems ; an 
important special case corresponds to  spatially periodic flows with no net axial flow. 
Itcpresentative results were presented in terms of two systems operating in the 
Stokes regime : the partitioned pipe mixer, which is an example of a steady spatially 
periodic flow, and thc eccentric helical annular mixer, which is a time-periodic 
flow. Several other geometries and modes of operation can be easily achieved ; two 
possible configurations amenable to both experimentation and analysis are shown 
in figure 2 1 .  Other modes of operation ~ beyond that of Stokes flow regime ~ might 
include exploiting instabilities such as those leading to Taylor-Couette flow, etc. 
(Fcnstcrmacher, Swinney & Gollub 1979; Swinney & Gollub 1985). This creatcs a 
large array of possibilities for future studies. 

The experiments presented here are labour intensive and consume large amounts 
of fluids. A reduction in the amount of fluids used can be achieved by scaling. A 
rcduction by a factor of one half should be possible; this should allow the use of 
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FIGURE 21. Variations on the eccentric helical annular mixer theme. 

lower-viscosity fluids without increasing the Reynolds numbers. Larger mixers could 
also be built; however, more-viscous fluids would be required to maintain Stokes flow 
conditions. Several problems could profitably be studied in these classes of flows ; 
dispersion and reactive mixing come to mind. However, experimental modifications 
are necessary. For example, dispersion experiments would require design changes to 
establish clean injection conditions over the entire cross-section ; furthermore, the 
current set-up is probably not long enough t o  verify numerical predictions (Jones & 
Young 1991). 

The experimental results obtained in the EHAM flow can be readily substantiated 
in terms of computations. The model in this instance is exact and the only remaining 
question is whether computations can be carried out under reasonable time and 
storage conditions. As pointed out in the past, the resolution provided by experiments 
can rarely be matched by computations (Ottino et al. 1988); an experiment is 
essentially analogue and computations, no matter how fine grained they are, 
invariably reveal discretization when initial condit,ions separate exponentially fast. 
The agreement between model and computations, however, is more problematic in 
the case of the PPM. A surprise from the experiments is the robustness of the KAM- 
tubes; the fact that they exist and are readily observable is gratifying but the fact 
that they persist under widely different experimental conditions is something that 
awaits theoretical elucidation. Experiments suggest that  the system is dominated by 
entrance and exit effects and that the flow is fully three-dimensional. Ways of 
assessing the importance of developing flows are to either carry out a full three- 
dimensional numerical simulation or to build a series of different mixers with 
different aspect ratios ; neither of these two possibilities seems especially attractive. 
Another question has to do with stretching within tubes. This is an instance where 
model predictions are suspect. The simplified model predicts that, under some 
conditions, the stretching in KAM-tubes can be higher than that in chaotic regions 
(Khakhar et aE. 1987) ; experiments, on the other hand, seem to indicate relatively 
little stretching within KAM-tubes. Unfortunately there are no realistic spatially 
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periodic systems to verify these predictions. It should be mentioned that bounded 
chaotic three-dimensional flow fields, such as those of Stone et al. (1991) and Bajer 
& Moffat (1990), lead to linear stretching within KAM-tubes (see Kusch 1991). 

These and other systems might find practical uses, although the goal here was to 
introduce a flexible device with which one could gain basic knowledge of mixing 
operations rather than inventing a practical design for specific applications. 
Applications of chaotic mixing in continuous flow might nevertheless be an incentive 
for these kinds of studies and it is convenient to record a few observations in this 
regard. The most obvious use of the apparatus presented here is in the development 
of basic knowledge for the design of new mixing devices such as those encountered 
in the polymer industry and biomedical applications; systems can be designed in 
such a way that a variety of design conditions are satisfied. For example, the mixing 
can be tailored to increase the speed of mass transfer processes and to accelerate the 
rate of diffusion-limited chemical reactions. If the fluids are ‘delicate’ such as bio- 
fluids, it is possible to design mild-shear-rate histories to avoid breakage and 
degradation. In many instances mixing requires narrow residence time distributions ; 
this can also be optimized by modifying the forcing in the flow. 

It should be stressed as well that some of the results presented here might suggest 
a rational foundation to time-trusted methodologies arrived at in an empirical or 
intuitive way; in fact, chaos might be used implicitly in many existing applications. 
A knowledge of the fundamentals of mixing might allow engineers to look at old 
processes with new eyes and suggest opportunities for process optimization and 
invention. 

We would like to extend our appreciation to the Fluid Mechanics Division of the 
National Science Foundation for supporting this work. 
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